

Lateral Movement

Summary of Latest Research

- Incorporating Near-Surface Processes in Modeling Moisture (Morris, C.E. and Stormont, S.C., 2000)
- Slope Effects on the Capillary Cover Design for Spent Leach Pad (Mayer, G.Z., etal., 2001)
- The Effectiveness of Two Capillary Barriers on a 10% Slope (Stormont, 1996)

Study: Incorporating Near-Surface
Processes in Modeling Moisture
(Morris, C.E. and Stormont, S.C., 2000)

Purpose: Show importance of using near surface processes for modeling moisture movement

Model:

- Tracer 3-D model modified for ET using HELP method
- 10-year simulation period
- 50 m model horizontal length

Climate:

Albuquerque (8.6 in/yr) San Francisco (20.5 in/yr) Chicago (36.2 in/yr)

Columbia (51.6 in/yr)

Conclusion:

- transient ET is important near surface process
- modeled drainage length should be longer than 50 m

Study: Slope Effects on the Capillary Cover Design for Spent Leach Pad (Mayer, G.Z., etal, 2001)

Purpose: Compare 1-D model results with 2-D to determine slope effectiveness

Model:

 soil cover used for 1-D, hydrus used for 2-D with evaporation rates from soil cover Climate: Elko, Nevada (7.18 in/yr to 15 in/yr)

- normal climate conditions
- extreme climate conditions

Conclusion:

- results from 2-D model confirm 1-D model
- downward flow is not expected to occur on the slope

Study: The Effectiveness of Two Capillary Barriers on a 10% Slope (Stormont, 1996)

Purpose: Determine effectiveness in a layered and homogenous capillary barrier in laterally diverted water (field test plot)

Model: Field test plot Climate:

- covered with plastic and constant infiltration (9.5 mm/day) for 43 days (homogeneous layer)
- covers removed and plots subject to evaporation and ambient precipitation for 193 days

Conclusion:

- water first produced in drain 6
- by day 22, all drains producing water
- drain 6 produced about 15% more water than attributed solely to infiltration suggesting some lateral drainage
- trend of increasing breakthrough in the down dip direction but failed over its entire length
- substantial diversion can be designed into a capillary barrier as a transport layer

Flat vs Sloping Summary

- Run-off is small with short travel times so downslope effect will be minimal
- 2-D hydros model confirmed 1-D soil cover model results for a 3:1 slope
- 2-D models and field test plots show a trend in increasing breakthrough in down dip direction during high infiltration with the low ET conditions, but ultimately failure over the entire cover
- All 2-D models had to be modified to simulate near surface ET process